Cantor diagonal argument

Restriction on the scope of diagonal argument will be set using two absolutely different proof techniques. One of the proof techniques will analyze contradictory equivalence (R ∈ R ↔ R ∉ R) in a rather unconventional way. Cantor's paradox. Cantor's paradox is based on two things: the first is Cantor's theorem and the second one is the

Cantor diagonal argument. This is known as Cantor's theorem. The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used.

0. Let S S denote the set of infinite binary sequences. Here is Cantor’s famous proof that S S is an uncountable set. Suppose that f: S → N f: S → N is a bijection. We form a new binary sequence A A by declaring that the n'th digit of A …

Add a Comment. I'm not sure if the following is a proof that cantor is wrong about there being more than one type of infinity. This is a mostly geometric argument and it goes like this. 1)First convert all numbers into binary strings. 2)Draw a square and a line down the middle 3) Starting at the middle line do...diagonalization argument we saw in our very first lecture. Here's the statement of Cantor's theorem that we saw in our first lecture. It says that every set is strictly smaller than its power set. ... Cantor's theorem, let's first go and make sure we have a definition for howCardinality; countable and uncountable sets; Cantor's Diagonal Argument Tests 1 Total 14 Evaluation Coursework 20 - 30% Tests 40 - 50% Final Exam 20 - 30% • Clear descriptions of thought processes, evidence of critical thinking, and effective communication must be demonstrated in written work.The argument we use is known as the Cantor diagonal argument. Suppose that $$\displaystyle \begin{aligned}s:A\to {\mathcal{P}}(A)\end{aligned}$$ is surjective. We can construct a ... This example illustrates the proof of Proposition 1.1.5 and explains the term ‘diagonal argument’.By the Cantor slash argument, as explained for example here (at about 4:00), a new real number can always be generated out of any list of real number decimal expansions by taking the digits along the diagonal of the list and calling those digits a new number.. I am having a hard time understanding why Cantor's slash argument does not …In any event, Cantor's diagonal argument is about the uncountability of infinite strings, not finite ones. Each row of the table has countably many columns and there are countably many rows. That is, for any positive integers n, m, the table element table(n, m) is defined. Your argument only applies to finite sequence, and that's not at issue.

The Cantor Diagonal Argument (CDA) is the quintessential result in Cantor's infinite set theory. It is over a hundred years old, but it still remains controversial. The CDA establishes that the unit interval [0, 1] cannot be put into one-to-one correspondence with the set of natural• Cantor's diagonal argument. • Uncountable sets - R, the cardinality of R (c or 2N0, ]1 - beth-one) is called cardinality of the continuum. ]2 beth-two cardinality of more uncountable numbers. - Cantor set that is an uncountable subset of R and has Hausdorff dimension number between 0 and 1. (Fact: Any subset of R of Hausdorff dimensionSubcountability. In constructive mathematics, a collection is subcountable if there exists a partial surjection from the natural numbers onto it. This may be expressed as. where denotes that is a surjective function from a onto . The surjection is a member of and here the subclass of is required to be a set.B3. Cantor's Theorem Cantor's Theorem Cantor's Diagonal Argument Illustrated on a Finite Set S = fa;b;cg. Consider an arbitrary injective function from S to P(S). For example: abc a 10 1 a mapped to fa;cg b 110 b mapped to fa;bg c 0 10 c mapped to fbg 0 0 1 nothing was mapped to fcg. We can identify an \unused" element of P(S).Proof that the set of real numbers is uncountable aka there is no bijective function from N to R.

The Math Behind the Fact: The theory of countable and uncountable sets came as a big surprise to the mathematical community in the late 1800's. By the way, a similar “diagonalization” argument can be used to show that any set S and the set of all S's subsets (called the power set of S) cannot be placed in one-to-one correspondence.The diagonal arguments are often also the source of contradictions such as the Russell paradox [7] [8] and the Richard paradox. [2]: 27 Properties set in its article from 1891, Cantor considered the set T of all the infinite binary sequences (ie each digit is zero or one).Georg Cantor. Cantor (1845–1918) was born in St. Petersburg and grew up in Germany. He took an early interest in theological arguments about continuity and the infinite, and as a result studied philosophy, mathematics and physics at universities in Zurich, Göttingen and Berlin, though his father encouraged him to pursue engineering. The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used.The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used.

Hocak nation.

Trouble understanding why Cantor's diagonal slash is necessary in a simple proof for Gödel's incompleteness theorem Ask Question Asked 11 years, 10 months agoCantor’s diagonal argument All of the in nite sets we have seen so far have been ‘the same size’; that is, we have been able to nd a bijection from N into each set. It is natural to ask if all in nite sets have the same cardinality. Cantor showed that this was not the case in a very famous argument, known as Cantor’s diagonal argument.Cantor's diagonal argument proves that you could never count up to most real numbers, regardless of how you put them in order. He does this by assuming that you have a method of counting up to every real number, and constructing a number that your method does not include. ReplyCantor’s diagonal argument. The person who first used this argument in a way that featured some sort of a diagonal was Georg Cantor. He stated that there exist no bijections between infinite sequences of 0’s and 1’s (binary sequences) and natural numbers. In other words, there is no way for us to enumerate ALL infinite binary sequences.Cantor's diagonal argument proves (in any base, with some care) that any list of reals between $0$ and $1$ (or any other bounds, or no bounds at all) misses at least one real number. It does not mean that only one real is missing. In fact, any list of reals misses almost all reals. Cantor's argument is not meant to be a machine that produces ...You have to deal with the fact that the decimal representation is not unique: $0.123499999\ldots$ and $0.12350000\ldots$ are the same number. So you have to mess up more with the digits, for instance by using the permutation $(0,5)(1,6)(2,7)(3,8)(4,9)$ - this is safe since no digit is mapped into an adjacent digit.

Concerning Cantor's diagonal argument in connection with the natural and the real numbers, Georg Cantor essentially said: assume we have a bijection between the natural numbers (on the one hand) and the real numbers (on the other hand), we shall now derive a contradiction ... Cantor did not (concretely) enumerate through the natural …Cantor diagonal argument. This paper proves a result on the decimal expansion of the rational numbers in the open rational interval (0, 1), which is subsequently used to discuss a reordering of the rows of a table T that is assumed to contain all rational numbers within (0, 1), in such a way that the diagonal of the reordered table T could be a ... The diagonal argument, by itself, does not prove that set T is uncountable. It comes close, but we need one further step. It comes close, but we need one further step. What it proves is that for any (infinite) enumeration that does actually exist, there is an element of T that is not enumerated.This analysis shows Cantor's diagonal argument published in 1891 cannot form a sequence that is not a member of a complete set. the argument Translation from Cantor's 1891 paper [1]: Namely, let m and n be two different characters, and consider a set [Inbegriff] M of elements E = (x 1, x 2Cantor’s diagonal argument All of the in nite sets we have seen so far have been ‘the same size’; that is, we have been able to nd a bijection from N into each set. It is natural to ask if all in nite sets have the same cardinality. Cantor showed that this was not the case in a very famous argument, known as Cantor’s diagonal argument.Ok so I know that obviously the Integers are countably infinite and we can use Cantor's diagonalization argument to prove the real numbers are uncountably infinite...but it seems like that same argument should be able to be applied to integers?. Like, if you make a list of every integer and then go diagonally down changing one digit at a time, you should get a new integer which is guaranteed ...Cantor's diagonal argument is a proof devised by Georg Cantor to demonstrate that the real numbers are not countably infinite. (It is also called the diagonalization argument or the diagonal slash argument or the diagonal method .) The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, but was published ... diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: Cantor's diagonal argument (the earliest) Cantor's theorem. Russell's paradox. Diagonal lemma. Gödel's first incompleteness theorem. Tarski's undefinability theorem. So I think Cantor's diagonal argument basically said that you can find one new number for every attempted bijection from $\mathbb{N}$ to $\mathbb{R}$. But at the same time, Hilbert's Hotel idea said that we can always accommodate new room even when the hotel of infinite room is full.By a similar argument, N has cardinality strictly less than the cardinality of the set R of all real numbers. For proofs, see Cantor's diagonal argument or Cantor's first uncountability proof. For proofs, see Cantor's diagonal argument or Cantor's first uncountability proof.Cantor's diagonal argument All of the in nite sets we have seen so far have been 'the same size'; that is, we have been able to nd a bijection from N into each set. It is natural to ask if all in nite sets have the same cardinality. Cantor showed that this was not the case in a very famous argument, known as Cantor's diagonal argument.

THE CASE AGAINST CANTOR'S DIAGONAL ARGUMENT V. 4.4 3 mathematical use of the word uncountable might not entirely align in meaning with its usage prior to 1880, and similarly with the term \trans ...

The canonical proof that the Cantor set is uncountable does not use Cantor's diagonal argument directly. It uses the fact that there exists a bijection with an uncountable set (usually the interval $[0,1]$). Now, to prove that $[0,1]$ is uncountable, one does use the diagonal argument. I'm personally not aware of a proof that doesn't use it.Cantor's diagonal argument [L'argument diagonal de Cantor]. See a related picture: (CMAP28 WWW site: this page was created on 08/08/2014 and last updated on ...Yes, but I have trouble seeing that the diagonal argument applied to integers implies an integer with an infinite number of digits. I mean, intuitively it may seem obvious that this is the case, but then again it's also obvious that for every integer n there's another integer n+1, and yet this does not imply there is an actual integer with an infinite number …This was proved by Georg Cantor in \(1891\) who showed that there are infinite sets which do not have a bijective mapping to the set of natural numbers \(\mathbb{N}.\) This proof is known as Cantor's diagonal argument .Yet Cantor's diagonal argument demands that the list must be square. And he demands that he has created a COMPLETED list. That's impossible. Cantor's denationalization proof is bogus. It should be removed from all math text books and tossed out as being totally logically flawed. It's a false proof.This is uncountable by the cantor diagonal argument. $\endgroup$ – S L. Feb 8, 2022 at 21:27 $\begingroup$ Also to prove the countability of sets, you show that there is back and forth injective function to set of natural numbers. For uncountability, you don't! $\endgroup$ – S L.Jan 21, 2021 · This last proof best explains the name "diagonalization process" or "diagonal argument". 4) This theorem is also called the Schroeder–Bernstein theorem . A similar statement does not hold for totally ordered sets, consider $\lbrace x\colon0<x<1\rbrace$ and $\lbrace x\colon0<x\leq1\rbrace$. Counting the Infinite. George's most famous discovery - one of many by the way - was the diagonal argument. Although George used it mostly to talk about infinity, it's proven useful for a lot of other things as well, including the famous undecidability theorems of Kurt Gödel. George's interest was not infinity per se.Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are now known as uncountable ...

Tzhaar fight pit.

Coach human resources.

Turing's proof, although it seems to use the "diagonal process", in fact shows that his machine (called H) cannot calculate its own number, let alone the entire diagonal number (Cantor's diagonal argument): "The fallacy in the argument lies in the assumption that B [the diagonal number] is computable" The proof does not require much mathematics.Cantor's Diagonal Argument ] is uncountable. Proof: We will argue indirectly. Suppose f:N → [0, 1] f: N → [ 0, 1] is a one-to-one correspondence between these two sets. We intend to argue this to a contradiction that f f cannot be "onto" and hence cannot be a one-to-one correspondence -- forcing us to conclude that no such function exists.I'm trying understand the proof of the Arzela Ascoli theorem by this lecture notes, but I'm confuse about the step II of the proof, because the author said that this is a standard argument, but the diagonal argument that I know is the Cantor's diagonal argument, which is used in this lecture notes in order to prove that $(0,1)$ is uncountable ...This paper reveals why Cantor's diagonalization argument fails to prove what it purportedly proves and the logical absurdity of "uncountable sets" that are deemed larger than the set of natural numbers. Cantor's diagonalizationYes, but I have trouble seeing that the diagonal argument applied to integers implies an integer with an infinite number of digits. I mean, intuitively it may seem obvious that this is the case, but then again it's also obvious that for every integer n there's another integer n+1, and yet this does not imply there is an actual integer with an infinite number of digits, nevermind that n+1->inf ...I'm trying to grasp Cantor's diagonal argument to understand the proof that the power set of the natural numbers is uncountable. On Wikipedia, there is the following illustration: The explanation of the proof says the following: By construction, s differs from each sn, since their nth digits differ (highlighted in the example).2 Cantor's diagonal argument Cantor's diagonal argument is very simple (by contradiction): Assuming that the real numbers are countable, according to the definition of countability, the real numbers in the interval [0,1) can be listed one by one: a 1,a 2,aThis pattern is known as Cantor’s diagonal argument. No matter how we try to count the size of our set, we will always miss out on more values. This type of infinity is what we call uncountable. In contrast, countable infinities are enumerable infinite sets. Consider the set of integers — we can always count up all whole numbers without ...Cantor Diagonal Argument, Infinity, Natural Numbers, One-to-One Correspondence, Real Numbers 1. Introduction 1) The concept of infinity is evidently of fundamental importance in number theory, but it is one that at the same time has many contentious and paradoxical aspects. The current position depends heavily on the theory of infinite sets andCantor's diagonal argument in the end demonstrates "If the integers and the real numbers have the same cardinality, then we get a paradox". Note the big If in the first part. Because the paradox is conditional on the assumption that integers and real numbers have the same cardinality, that assumption must be false and integers and real numbers ...Cantor's theorem, in set theory, the theorem that the cardinality (numerical size) of a set is strictly less than the cardinality of its power set, or collection of subsets. Cantor was successful in demonstrating that the cardinality of the power set is strictly greater than that of the set for all sets, including infinite sets. ….

In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers.: 20- Such sets are now known as uncountable sets, and the size of ...In my head I have two counter-arguments to Cantor's Diagonal Argument. I'm not a mathy person, so obviously, these must have explanations that I have not yet grasped. My first issue is that Cantor's Diagonal Argument ( as wonderfully explained by Arturo Magidin ) can be viewed in a slightly different light, which appears to unveil a flaw in the ... When people say "diagonal argument", they don't mean Cantor's particular proof of $\mathbb{Q} < \mathbb{R}$, but rather some idea, some proof technique, which is only loosely defined. And yet, the concept is useful, and the experienced mathematician will be quite content when told that a certain statement "can be proved by diagonalization"; if ...That's the content of Cantor's diagonal argument. I've described it several times. The "diagonal argument" in CDA is the proof that any countable list of infinite-length binary strings will necessarily omit at least one such string. This does not mention the set of all such strings, ...The Math Behind the Fact: The theory of countable and uncountable sets came as a big surprise to the mathematical community in the late 1800's. By the way, a similar “diagonalization” argument can be used to show that any set S and the set of all S's subsets (called the power set of S) cannot be placed in one-to-one correspondence. Cantor Diagonal Argument -- from Wolfram MathWorld. Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology. Alphabetical Index New in MathWorld. Foundations of Mathematics. Set Theory.A diagonal argument has a counterbalanced statement. Its main defect is its counterbalancing inference. Apart from presenting an epistemological perspective that explains the disquiet over Cantor's proof, this paper would show that both the mahāvidyā and diagonal argument formally contain their own invalidators.An illustration of Cantor's diagonal argument (in base 2) for the existence of uncountable sets. The sequence at the bottom cannot occur anywhere in the enumeration of sequences above. An infinite set may have the same cardinality as a proper subset of itself, as the depicted bijection f(x)=2x from the natural to the even numbers demonstrates ...Other articles where diagonalization argument is discussed: Cantor's theorem: …a version of his so-called diagonalization argument, which he had earlier used to prove that the cardinality of the rational numbers is the same as the cardinality of the integers by putting them into a one-to-one correspondence. The notion that, in the case of infinite sets, the size of a…In my head I have two counter-arguments to Cantor's Diagonal Argument. I'm not a mathy person, so obviously, these must have explanations that I have not yet grasped. My first issue is that Cantor's Diagonal Argument ( as wonderfully explained by Arturo Magidin ) can be viewed in a slightly different light, which appears to unveil a flaw in the ... Cantor diagonal argument, 3. Cantor's diagonal argument: As a starter I got 2 problems with it (which hopefully can be solved "for dummies") First: I don't get this: Why doesn't Cantor's …, Cantor's Diagonal Argument: The maps are elements in N N = R. The diagonalization is done by changing an element in every diagonal entry. Halting Problem: The maps are partial recursive functions. The killer K program encodes the diagonalization. Diagonal Lemma / Fixed Point Lemma: The maps are formulas, with input being the codes of sentences., 1. Using Cantor's Diagonal Argument to compare the cardinality of the natural numbers with the cardinality of the real numbers we end up with a function f: N → ( 0, 1) and a point a ∈ ( 0, 1) such that a ∉ f ( ( 0, 1)); that is, f is not bijective. My question is: can't we find a function g: N → ( 0, 1) such that g ( 1) = a and g ( x ..., Cantor's diagonal argument is a mathematical method to prove that two infinite sets have the same cardinality.[a] Cantor published articles on it in 1877, 1891 and 1899. His first proof of the diagonal argument was published in 1890 in the journal of the German Mathematical Society .[2] According to Cantor, two sets have the same cardinality, if it is possible to …, Refuting the Anti-Cantor Cranks. Also maybe slightly related: proving cantors diagonalization proof. Despite similar wording in title and question, this is vague and what is there is actually a totally different question: cantor diagonal argument for even numbers. Similar I guess but trite: Cantor's Diagonal Argument, I want to point out what I perceive as a flaw in Cantor's diagnoal argument regarding the uncountability of the real numbers. The proof I'm referring to is the one at wikipedia: Cantor's diagonal argument. The basic structure of Cantor's proof# Assume the set is countable Enumerate all reals in the set as s_i ( i element N), In my last post, I talked about why infinity shouldn’t seem terrifying, and some of the interesting aspects you can consider without recourse to philosophy or excessive technicalities.Today, I’m going to explore the fact that there are different kinds of infinity. For this, we’ll use what is in my opinion one of the coolest proofs of all time, originally due to …, As Turing mentions, this proof applies Cantor’s diagonal argument, which proves that the set of all in nite binary sequences, i.e., sequences consisting only of digits of 0 and 1, is not countable. Cantor’s argument, and certain paradoxes, can be traced back to the interpretation of the fol-lowing FOL theorem:8:9x8y(Fxy$:Fyy) (1) , I don't quite follow this. By -1/9 I take it you are denoting the number that could also be represented as the recurring decimal -0.1111 ... No, I am not. As I said, - refers to additive inverse, and / refers to multiplication by the multiplicative inverse. The additive inverse of 1 is..., In Cantor’s 1891 paper,3 the first theorem used what has come to be called a diagonal argument to assert that the real numbers cannot be enumerated (alternatively, are non-denumerable). It was the first application of the method of argument now known as the diagonal method, formally a proof schema., We would like to show you a description here but the site won’t allow us., Cantor proved that the collection of real numbers and the collection of positive integers are not equinumerous. In other words, the real numbers are not countable. His proof differs from the diagonal argument that he gave in 1891. Cantor's article also contains a new method of constructing transcendental numbers. , Cantor proved that the collection of real numbers and the collection of positive integers are not equinumerous. In other words, the real numbers are not countable. His proof differs from the diagonal argument that he gave in 1891. Cantor's article also contains a new method of constructing transcendental numbers. , Cantor's first proof, for example, may just be too technical for many people to understand, so they don't attack it, even if they do know of it. But the diagonal proof is one we can all conceptually relate to, even as some of …, 5 dic 2011 ... Therefore, Cantor's diagonal argument has no application to all n-bit binary fractions in the interval [0,1]. Approximation of Real Numbers., This paper critically examines the Cantor Diagonal Argument (CDA) that is used in set theory to draw a distinction between the cardinality of the natural numbers and that of the real numbers. In the absence of a verified English translation of the original 1891 Cantor paper from which it is said to be derived, the CDA is discussed here, This is the desired contradiction. The method of construction for this extra sequence is known as Cantor's diagonal argument. 4. Illustration of Cantor's ..., Cantor's Diagonal Argument - Different Sizes of Infinity In 1874 Georg Cantor - the father of set theory - made a profound discovery regarding the nature of infinity. Namely that some infinities are bigger than others. This can be seen as being as revolutionary an idea as imaginary numbers, and was widely and vehemently disputed by…, The diagonal argument shows that represents a higher order of infinity than . Cantor adapted the method to show that there are an infinite series of infinities, each one astonishingly bigger than the one before. Today this amazing conclusion is honoured with the title Cantor's theorem, but in his own day most mathematicians did not understand ..., About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features NFL Sunday Ticket Press Copyright ..., You would need to set up some plausible system for mathematics in which Cantor's diagonal argument is blocked and the reals are countable. Nobody has any idea how to do that. The best you can hope for is to look at each proof on a case-by-case basis and decide, subjectively, whether it is "essentially the diagonal argument in disguise.", Cantor diagonal argument. This paper proves a result on the decimal expansion of the rational numbers in the open rational interval (0, 1), which is subsequently used to discuss a reordering of the rows of a table T that is assumed to contain all rational numbers within (0, 1), in such a way that the diagonal of the reordered table T could be a ..., count of the conflict between Cantor and Kronecker can be found in Hal Hellman's book [6]. A decade later Cantor published a different proof [2] generalizing this result to perfect subsets of Rk. This still preceded the famous diagonalization argument by six years. Mathematical culture today is very different from what it was in Cantor's ..., Given a list of digit sequences, the diagonal argument constructs a digit sequence that isn't on the list already. There are indeed technical issues to worry about when the things you are actually interested in are real numbers rather than digit sequences, because some real numbers correspond to more than one digit sequences., S is countable (because of the latter assumption), so by Cantor's diagonal argument (neatly explained here) one can define a real number O that is not an element of S. But O has been defined in finitely many words! Here Poincaré indicates that the definition of O as an element of S refers to S itself and is therefore impredicative., 3. Cantor's diagonal argument: As a starter I got 2 problems with it (which hopefully can be solved "for dummies") First: I don't get this: Why doesn't Cantor's …, In set theory, Cantor's diagonal argument, also called the diagonalisation argument , the diagonal slash argument or the diagonal method , was published in 1891 by Georg Cantor. It was proposed as a mathematical proof for uncountable sets. It demonstrates a powerful and general technique, The Cantor diagonal method, also called the Cantor diagonal argument or Cantor's diagonal slash, is a clever technique used by Georg Cantor to show that the integers and reals cannot be put into a one-to-one correspondence (i.e., the uncountably infinite set of real numbers is "larger" than the countably infinite set of integers )., Cantor demonstrated that transcendental numbers exist in his now-famous diagonal argument, which demonstrated that the real numbers are uncountable.In other words, there is no bijection between the real numbers and the natural numbers, meaning that there are "more" real numbers than there are natural numbers (despite there being …, This is known as Cantor's theorem. The argument below is a modern version of Cantor's argument that uses power sets (for his original argument, see Cantor's diagonal argument). By presenting a modern argument, it is possible to see which assumptions of axiomatic set theory are used., B Another consequence of Cantor's diagonal argument. Aug 23, 2020; 2. Replies 43 Views 3K. I Cantor's diagonalization on the rationals. Aug 18, 2021; Replies 25 Views 2K. B One thing I don't understand about Cantor's diagonal argument. Aug 13, 2020; 2. Replies 55 Views 4K. I Cantor's diagonal number. Apr 21, 2019; 2., Cantor's diagonal argument works because it is based on a certain way of representing numbers. Is it obvious that it is not possible to represent real numbers in a different way, that would make it possible to count them? Edit 1: Let me try to be clearer. When we read Cantor's argument, we can see that he represents a real number as an infinite ..., In 1891, mathematician George Cantor has proven that we can never make 1-to-1 correspondence between all elements of an uncountable infinity and a countable infinity (i.e. all the natural numbers). The proof was later called as "Cantor's diagonal argument". It is in fact quite simple, and there is an excellent animation on that in [1].